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Abstract

A state space formalism for anisotropic elasticity including the thermal effect is developed. A salient feature of the
formalism is that it bridges the compliance-based and stiffness-based formalisms in a natural way. The displacement and
stress components and the thermoelastic constants of a general anisotropic elastic material appear explicitly in the
formulation, yet it is simple and clear. This is achieved by using the matrix notation to express the basic equations and
grouping the stress in such a way that it enables us to cast neatly the three-dimensional equations of anisotropic
elasticity into a compact state equation and an output equation. The homogeneous solution to the state equation for the
generalized plane problem leads naturally to the eigen relation and the sextic equation of Stroh. Extension, twisting,
bending, temperature change and body forces are accounted for through the particular solution. Based on the for-
malism the general solution for generalized plane strain and generalized torsion of an anisotropic elastic body are
determined in an elegant manner.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Plane problems of anisotropic elasticity were studied by Lekhnitskii (1968, 1981) using a compliance-
based formalism, and by Eshelby et al. (1953), Stroh (1958), Ting (1996, 2000) among others, using a
stiffness-based formalism. According to the Lekhnitskii formalism, the stress is expressed in terms of a pair
of stress functions such that the equilibrium equations are satisfied identically, and through the compati-
bility conditions a system of high order differential equations for the stress functions is derived to determine
the solution. In the Stroh formalism the general solution is expressed in terms of the eigenvectors and
analytic functions of complex variables, and the matrix identities derived from the eigen relations are useful
in simplifying or interpreting the results. It is believed that the two formalisms are equivalent, yet this was
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taken for granted until Barnett and Kirchner (1997) gave a formal proof of the equivalence of the sextic
equations in the two formalisms. Recently, Yin (2000a,b) studied the latent structure of the Lekhnitskii
formalism and showed their duality by making use of the eigen relations. In both formalisms the stress
functions play an essential role. It should be noted that the Stroh formalism does not allow for antiplane
deformations associated with extension, torsion and bending.

In this paper we develop a state space formalism for anisotropic elasticity including the thermal effect.
The paper consists of two parts. Part I presents the formalism for the rectilinearly anisotropic body in
which the elastic property at each point is characterized by the three directions in the Cartesian coordinates.
Beginning with a three-dimensional formulation, we show that the compliance-based and stiffness-based
formulations result in the same state equation and output equation, and the homogeneous solution to the
state equation for the generalized plane problem leads naturally to the eigen relation and the sextic equation
of Stroh. The two formalisms coincide in the state space framework.

The idea of the state space has been used extensively in the system engineering and control theory. In the
area of elasticity, Bahar (1975) showed that the plane stress problem of an isotropic elastic body could be
brought within the state space framework. The basic structure was exhibited but no further development
were given. Zhong (1995) presented the plane elasticity in state space and examined its connections to the
Hamiltonian system. Recently, we have employed the state space approach for various problems of an-
isotropic materials (Wang et al., 2000; Tarn, 2001; Tarn and Wang, 2001). Herein we develop the formalism
for a general anisotropic elastic body with emphasis on generalized plane strain and generalized torsion.
When a general anisotropic elastic body is subjected to loadings that do not vary along the x; axis, the stress
and strain are independent of x;, but the displacement depends on x3 as well as on x; and x,. The body is in
the state of generalized plane strain when subjected to an axial force and bending moments at the ends and
surface tractions that are independent of x;; it is in the state of generalized torsion when subjected to a
torque at the ends and free from surface tractions and body forces (Lekhnitskii, 1981). The two classes of
problems are referred to as the generalized plane problem. They differ only in the boundary conditions, and
can be treated in the same context.

The underlying concept of the state space formalism is that the elastic body is regarded as a linear
system. The state equation is derived from the basic equations without eliminating the stress or the dis-
placement so that it involves at most second derivatives of the field variables. To be concise, it is expedient
to group the stress into two parts: T, = [012, 023, 022], consisting of the components with one of the sub-
scripts being 2, and the remaining components, t; = [011, 633, 013). The reason for making this grouping is
that for the problems in Cartesian coordinates, such as stress analysis of a laminated system or a layered
medium, if the x; axis is pointed in the thickness direction, the traction boundary conditions and the in-
terfacial continuity conditions are directly associated with t,, the traction vector on the plane perpendicular
to the x, axis. The grouping enables us to use the matrix notation to cast the three-dimensional equations of
anisotropic elasticity into a compact state equation and an output equation. Related works by Alshits and
Kirchner (1995a,b) on multilayers also studied the problem by representing the elasticity equations by a
system of first-order differential equations. What distinguishes the present formalism from the others is that
the displacement and stress and the thermoelastic constants of the anisotropic material appear explicitly
without using the stress functions or the reduced material parameters (such as the reduced elastic com-
pliances in the Lekhnitskii formalism), yet the formulation is remarkably simple. Only the displacement
vector u, 7, 7o, and four matrices that characterize the elastic property of the material come into play,
instead of the individual components of the displacement and stress and the twenty-one elastic constants of
a general anisotropic material. Moreover, u and 1, are the only unknowns in the state equation. When
applied to the generalized plane problem, it enables us to determine the general solution systematically. The
coincidence of the compliance-based and stiffness-based formalisms is established by using the identities
inherent in the constitutive matrices. Extension, twisting, bending, temperature change and body forces are
clearly expressed by the non-homogeneous terms in the state equation. The homogeneous solution of the
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state equation takes the form of analytic functions of complex variables. The solution process leads, in a
natural and logical manner, to the eigen relation and the sextic equation of Stroh. The particular solution
takes into account the effects of the antiplane and bending deformations as well as the end loads and
temperature change. In finding the solution for a specific problem the solution approaches documented in
Lekhnitskii (1981) and Ting (1996) can be employed as well.

This part of the paper focuses on the development of the state space formalism in the Cartesian coor-
dinates. Illustrative examples will be given in Part II of the paper (Tarn, 2002a) and an accompanied paper
on piezothermoelasticity (Tarn, 2002b).

2. State space formulation
2.1. Basic equations in matrix form

The thermoelastic constitutive equations of an anisotropic material are

011 Cit Cn2 Ci3 Cig Ci5 Cie e11 By

022 Ci2 Cx»n (€3 Cy4 Cp5 (6 & B,

033 | _ [C€13 €23 €33 €34 (35 C36 &3 | _ B3 T (1)
023 Ci4 C24 C3q4 Ca4 C45 Cqe 23 Ba ’

g13 Cis5 Cz5 C35 C45 Cs55 Cs6 2ey3 Bs

g12 Cie6 €6 C36 Ca6 Cs56 Ce6 2, Bé

where ¢;; and ¢; are the stress and strain tensors; c¢;; and f; are the elastic constants and the thermal co-
efficients of the material, respectively; T is the temperature change.

The formulation of anisotropic elasticity could be greatly simplified if the stress and strain are grouped
properly. To this end, let us group the stress and strain components into two parts: one consists of the
components associated with the subscript 2, another consists of the remaining components, and rewrite Eq.
(1) concisely as

| |Cu Cn|ln B T 5
=lcl ¢ - ; (2)
T2 12 2] Y B,
where
_ T _ T
r1—[013 011 033] ) ‘52—[012 022 023] ,
T T
=126 en en], Y, =1[2e &n 23] .
Cs5 C15 C3s Ce6 C26 Ca6
T T
Ci= C“ = |Cs5 Cu Ci3 |, Cy= ng = | Cx Cxn (4|,
C35 C13 C33 Ca6 C24 Ca4
Cs6  Cas  Ca5 Bs B
Co=|c6 cn cul, Bi=1|B|, B, = | B
C3 C23 C34 ﬂ3 ﬁ4

The strain—displacement relations may be expressed as

HEESH! ()
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where O; stands for the partial derivative with respect to x;, and

u=[u w us]T7 L, = K0 + K03, L, = K;0; + K403,

0 0 1 1 00 010 000
Ki=|1 0 0], Ky=|0 0 0], K;y=1({0 0 0], Ki=]0 0 0
0 00 0 0 1 0 00 010

The equilibrium equations can be written in a single matrix equation as
62‘52 =+ L{Tl + Lg‘b'z + F = 0, (4)

where F=[F, F, F; ]T is the body force vector.

With the basic equations so expressed, the individual elastic constants and the displacement and stress
components are no longer in view; they are replaced by C;;, u, 7; and 7, which play the principal roles
hereafter.

2.2. Stiffness-based formulation

The formalism may be developed by expressing the strain by the stress through the constitutive equa-
tions in terms of either the elastic stiffness or the elastic compliance. We begin with the formulation using
the stiffness representation. A key step of the state space formalism is to express the basic equations into a
state equation in terms of the state vector. For the reasons aforementioned, we choose [u, 7,]” to be the state
vector.

Substitution of Eq. (3) into Eq. (2) leads to

7| _ [ (CuLi + Cpply)u Cnou| | B
[Tz} B |:(C{2Ll + szLz)u} + [szazu} [ﬁ;]T' (5)

Eq. (5); may be rewritten as

du=[-C,CLL —L, C] [:J +CL BT (6)
Substituting Eq. (6) in Eq. (5); gives the output equation:

n=[CuL CnG;l] [T"J ~ BT, (7)
where

C,=C, - C12C£21C1T27 B =B — C12C;21ﬁ2.
Inserting Eq. (7) into Eq. (4) yields

01y = [-LICy L, D{l][;] +L{B,T-F. (8)
Egs. (6) and (8) can be cast into a single matrix differential equation as
28 S0 (50
— = ST — 9
axz |:172:| |:D2] DITI T2 + L{ﬁl F|’ ( )
where

Dy = _C2_21C1T2L' — L, Dy = _LlTé”L]'
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Eq. (9) is the state equation of three-dimensional anisotropic elasticity. It is central to the formalism;
once it is solved, all the displacement and stress components follow.

2.3. Compliance-based formulation

The constitutive equation may also be expressed in terms of the elastic compliance as

_)!1 Su Sip||wn o
= T 10

a)- s s)le] 2] @
where the stiffness matrix and the thermal expansion coefficients are

[Sii S12] _ [Cn (312]1 |:“1:| _ Sy Sl2:| [ﬂl]

S, S» C, Cn] "~ | [Sh Sullb]
Substituting Eq. (3) into Eq. (10) gives

Dju 0] [Su Si||= a |

o] relal = (30 &2][2] ¢ 2] o

Eqgs. (4) and (11) can be expressed in terms of [u, rZ]T. The output equation is obtained from Eq. (11), as
_ _ u _
7 =[S'Li —S;'Si] LJ T (12)
Substituting Eq. (12) in Egs. (11), and (4) yields the state equation in terms of the elastic compliance:

i[“] _[Dy 1:)12} [u] N {az—SszS”lal]T_ “’:] (13)

T Tg-1
ox, | T2 L Dy, Dll T2 L1 Sll o

where

]:)11 ]:)12- _ SLS;'Li —L, S»—S[S;/S,
Dy, D1T1 J _LlrsfllLl LlTSfllsl2 - LzT ‘

3. Matrix identities

In order to show that the stiffness-based and compliance-based formalisms are completely equivalent, it
is necessary to establish certain identities associated with the constitutive matrices. Since the compliance
and stiffness matrices are inverse to each other, there exist the following relations between the sub-matrices:

SiuCi + Slzclrz =1, Si1Ciz +812Cx =0, (14)

SLCi +S»CL =0, S/ C;+SpCy=1 (15)
Substituting Eq. (14), in Eq. (15), leads to

(Sy —SLS;/'S1)Cy = L. (16)
Thus

Sy —SLS; 'S, = Cy). (17)
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From Eq. (14)
S, =Cn+S;'SuCh, S!S =-CnCy,. (18)
Substituting Eq. (18), in Eq. (18);, and taking transpose of Eq. (18), produces
S, = Ci=Cp— C,C5,) CY,, (19)
Sszsl_ll = _C2_21C1T2- (20)
It follows from Egs. (17), (19) and (20) that
% — Sszsl_llal = Cz_zlﬂzv S1_11°'1 =B =8 - C12C2_21ﬁ2- (21)
These identities show that
[l:)n 1512] _ [Dll szl] [052 —Slrzsuloh} _ {Cz_zlﬁz}'
D, D] Dy D | L[S, o L'B,
The coincidence of Egs. (12), (13) and Egs. (7), (9) thus is proved. If not for the concise matrix repre-

sentation of the constitutive equations, it would be difficult to show that the stiffness-based and compliance-
based formalisms are identical.

4. Generalized plane problems
4.1. State equation

As is well known, it is extremely difficult to determine the general solution to the three-dimensional
equations of anisotropic elasticity, yet the structure of Eq. (9) suggests that if the functional dependence on
one of the coordinates is known a priori, the equation becomes two-dimensional and an analytic solution
may be obtainable. Indeed, for the generalized plane problems the formalism allows for a general solution.

When an anisotropic elastic body is in the state of generalized plane strain and generalized torsion, the
stress and strain are independent of x;. The displacement field is dependent on x;, given by

Uy =u— b1x§/2 — Uxpx3 — W3X2 + Wax3 + Uy, (22)
Uy =0 — b2x§/2 + Ux1x3 + 3x] — wix3 + Vg, (23)
us = w+ (bixy + bpxa + &)x3 — waxy + w1xz + wy, (24)

where u, v, w are unknown functions of x; and x,; w;, w,, w3 and ug, vy, wy are constants characterizing the
rigid body displacements. The constant ¢ is a uniform extension, ¥ is associated with the curvature due to
twisting, b, and b, are associated with the curvatures due to bending. Egs. (22)—(24) have been derived in
Section 18 of Lekhnitskii’s monograph (1981) by a rather tedious manipulation of the displacement-stress
relations. The derivation based on the present formalism is simpler. It is given in Appendix A.

On substituting Egs. (22)—(24) in Egs. (7) and (9), the state equation and the output equation for the
generalized plane problem read

(2[5 )-GO
— = - 2|0, 25
axz |:12:| |: —A26]1 —A{C;zla] T2 pz + Llrﬁl f ( )
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1 =[CiKd C,Cy] [:J + Cul(e + bixi + boxa)ky — 9x:ko] — By T, (26)

where T = T(x;,x,), the body force F; is not present, and

R 0 1 _ Css Cis  Css
u=|v |, f=|FA], ki=10], k, = ; Chi=|¢s ¢n ¢z,
0 1 0 Cis C13 C33

Al = C1T2K1 + C22K3, A2 = KféllKla

P = Co) Cho(e + bixy + boxa)ki — ko] + Ox ki, po=b1[¢ 0 &) g

When the stress is independent of x3, the stress resultants over the cross section Q reduce to an axial force
P,, a torque M,, and bi-axial bending moments M;, M,; the resultant shears vanish identically. The end
conditions may be written in the matrix form as

/(Hl‘Cl + H,1,)dx; dx, =P, (27)
o
where
0 0 1 00 O P.
o 0 0 X2 o 0 0 0 _ M1
H=19 o x| ™®=lo0 o] P |m
—X2 0 0 0 0 X1 Mt

The non-homogeneous term in the state equation contains the constants b, b, ¢ and ©. As there is a one
to one correspondence between them and the applied loads through the end conditions, they may be re-
garded as known a priori in the formulation.

4.2. Homogeneous solution

The general solution to Eq. (25) consists of the homogeneous solution and the particular solution. Let us
consider the homogeneous solution in the form

a = UF(z), 7, = SF'(z), (28)
where U and S are unknown constant vectors, p is a parameter to be determined, and
F'(z) =dF(z)/dz, z=x+ px,.
Substituting Eq. (28) in Eq. (25) yields the eigen relation:

-1 -1
S el LS @
where p is the eigenvalue, [U,S]" is the eigenvector.
Expressing S in terms of U using Eq. (29); gives
S = (A; +pCy)U. (30)
Substituting Eq. (30) in Eq. (29), leads to
[As + p(Ar +A]) + p*Cu]U =0, (31)
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where
Az = K C K, +K CK; +KTC ,Ki +K CrKs;.

For the existence of a non-trivial solution of Eq. (31) the determinant of the coefficient matrix must
vanish,

|As + p(A; + A]) + p*Cxp| = 0. (32)

A simple manipulation shows that

Ci6 Ce6 Cse €11 Cie Cis
A= |cn cx o5, A3 = |cis Ce6 Cs6 |,
Cl4  C46 C45 Ci5 Cs6  Cs5

so that A; = Q, AIT =R, C» =T, where Q, R, T are the notations used in the Stroh formalism (Ting, 1996).
This shows that Eq. (32) is precisely the sextic equation of Stroh. Moreover, the eigen relation, Eq. (29), is
exactly the one posed in the Stroh formalism. Here it arises naturally and logically. The entities of the
matrix are expressed in terms of the sub-matrices of the elastic stiffness.

At this stage, it is evident that the development may be carried on following the same line as in Ting’s
monograph. It is known that the p cannot be real by virtue of the positive-definiteness of the strain energy,
and there are three pairs of complex conjugate p since the coefficients of Eq. (32) are real.

Denoting the eigenvalues and the associated eigenvectors by

Dk = Y + 10, Prys = D = % — 11, (b > 0), (33)

U =U, Si3=S (k=1,2,3), (34)

where 1 is the imaginary number, »; and 7, are real, there follow

= 2Re{ iuka(zk)}, (35)

3
T = 2Re{ Z A4 +ka12 UkF (Zk)} (36)
k=1
3
T, = ZRC{ Z(Al +ka22)UkF}{/(Zk)}, (37)
k=1

where the Uy are the eigenvectors associated with py; F; are functions of z;(= x| + pyx,), and

Ci5 C56  Css
Ay =CK  +CKs = |cii ci6 cis

€13 €36 €35
We remark that we have considered only mathematically non-degenerate materials such that the roots of

the sextic equation are distinct. For the case of repeated roots the homogeneous solution to Eq. (25) must
be modified accordingly.
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4.3. Particular solution

The non-homogeneous terms in Eq. (25) are due to extension, torsion, bending, temperature change and
body forces. The particular solution corresponding to a prescribed set of by, b,, ¢, ¥ and a given temperature
change and body force can be determined in an elementary way. For a uniform temperature change AT and
a constant body force f the particular solution is found to be

u= alx%/2+azx1x2 +a3x§/2, (38)

T, = sCszkl — B, AT, (39)

71 = eCpik — 196111(2362 + 611[(1(131 + biky)x; + (Kjay + boky )xa] — B, AT, (40)
in which the constant vectors a;, a,, a; are determined from

K'CKia, = —p, —f, (41)

Aja; + Cpa, = _blC1T2k1 — 9Cxk, (42)

Aja, + Cypa; = —b,CLk; +9CLk,. (43)

It is known that the Stroh formalism is intended for plane deformations—problems with antiplane as
well as inplane deformations (for example, torsion and bending) can only be dealt with by means of su-
perposition of various special solutions. In the state space formalism, by contrast, the effects of extension,
torsion, bending, temperature change and body forces are taken into account through the particular so-
lution systematically.

The general solution is obtained by superposing Egs. (35)-(37) and (38)—(40) along with Egs. (22)—(24),
in which the analytic functions F,(z;) are to be determined for a specific problem. For a simply or doubly
connected domain it is often effective by using the Cauchy integral formula to derive the analytic functions
from the boundary conditions, or assuming a power series representation

Fk(Zk) = Ak hle —+ Z C,,kZZ, F}(/(Zk) = AkZI:I —+ Z I’lC,,kZ;171 (44)
combined with conformal mapping to find a series solution. The solution approach has been documented in
Lekhnitskii (1981) and Ting (1996).

5. Closing remarks

In the formulation the stresses are grouped into t; = [0}3, 011, 033] and ©, = [g12, 02, 023], the derivative
with respect to x; is taken to the left-hand side of the state equation. Naturally, it is permissible to group the
stress differently and take the derivative with respect to x; or x3 to the left-hand side. In Appendix B we
present an alternative formulation based on grouping the stress into inplane and antiplane components.
The derivation is essentially the same as given in the main body of the text. In determining the homoge-
neous solution to the state equation for the generalized plane problem, the formulation again leads to the
sextic equation of Stroh but the eigen relation does not emerge. We remark that any proper grouping is
admissible, resulting in a state equation and an output equation different in form but same in effect.

For a laminated plate or multilayered medium the interfacial and boundary conditions along the planes
x, = constant are directly related to the state vector [u, 7,]. The formalism in conjunction with the method
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of transfer matrix is useful in satisfying these conditions. The transfer matrix transmits the state vector from
one layer to another and takes into account the interfacial continuity and lateral boundary conditions in a
systematic way. Relevant studies in the cylindrical coordinates have been presented (Tarn, 2001; Tarn and
Wang, 2001). Problems in the Cartesian coordinates can be studied along such lines.

Strictly speaking, the state of generalized plane strain and generalized torsion exist only in an infinitely
long prismatic body subjected to loadings that do not vary axially. Stress disturbance inevitably occurs if
the exact end conditions are approximated by the statically equivalent conditions of the stress resultants. It
is known that the Saint-Venant end effects in anisotropic elastic materials may not be local to the boundary
layer region (Horgan, 1996). Study of the stress decay in anisotropic laminates in the state space setting has
been reported (Wang et al., 2000; Tarn and Huang, 2002). Investigation via the state space formalism may
prove to be effective in treating more general problems.
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Appendix A. Derivation of Eqs. (22)-(24)

When the stress and temperature fields are independent of x3;, Egs. (7) and (9) may be expressed as

du = —[(K;5 + C5) CLK )3 + (K4 + C3, CLK;)0s]u + g, (A1)
[K]TEHKl@” + (KlTénKz + K§(~?11K1)613 + KZTénKzaB]“ =g, (A.2)
(K101 + K»03)u = g5, (A.3)

where g; are known functions of x; and x,. Without loss in generality the expressions need not be written
out.
Eq. (A.2) suggests that u;, u,, u3 are at most power functions of x; of degree two. Thus

uy = fi(x1,0)%5 + fo(x1,%2)x3 + f3(x1,x2), (A4)

uy = falxr, x2)x5 + f5(x1,%2)x3 + fo(x1,x2), (A.5)

us zﬁ(xl,xz)xi + fa(x1,x2)x3 + fo(x1,x2), (A.6)
where f; are yet unknown functions. Substituting them into Eq. (A.3) yields

J1 = ¢ = constant, 2= fa(x), f1=0, O1fs(x1,x2) = —2cy. (A7)
Integrating Eq. (A.7), gives

fs = —2c1x1 + f(x2). (A.8)

Substituting Eqgs. (A.7) and (A.8) in (A.1), equating the terms of x; on both sides produces
fa(x1,x2) = ¢4 = constant, (A.9)

02/2(x2) = =01 f5(x1,x2), 0> f5(x1,x) =0, 0sf (x2) = —2c4, (A.10)
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azf3(x17x2> = hy, azfs(xuxz) = hy, a2f9()61,x2) = hs, (A-ll)

where s, are known functions of x; and x,, from which

fz = —CyXxy + w3, f5 = (X1 — Wy, f(Xz) = —2C4X2 — Cs, (A12)
fr=ulx,x) — o0+, fo = v(x1,x2) + 0331 + vy, (A.13)
So = w(x1,x2) — wax1 + w1x2 + wy, (A.14)

where the linear terms of x; and x, represent rigid body displacements.
Substituting f; in Egs. (A.4)—(A.6), slightly changing the notations, there follows the displacement field
given by Eqgs. (22)—(24).

Appendix B. An alternative formulation

The three-dimensional equations can be rearranged in matrix forms by grouping the stress into inplane
and antiplane components. The state equation is formulated as

O [ul [Ly Lp||u C.'B. 0
o L} _{Lm |||t Dip, T—1gl (B.1)
and the output equation as

~ _ u ~
= [CPPDI szszl] [1’ ] B ﬂPT’ (B.2)
u=[u, w w], F=[F B R,
T T
Ty = [0'11 02 0’12] ) T, = [0'13 023 033] s
ﬁp = [ﬁl B> ﬂs]Ta B. = [ﬁs Ba ﬁ3]Ta
L, =-D, - CZ_ZIC;ZDh L= Cz_zl7 L = _D{Epp])la
D, = K9, +K,0,, D, = K30, + K40,

C, =C,—C.C.'C’ B, =B, - C.C.'B.,

pz?

i1 Cr2 Cig Cs5  C45 C35 Ci5 Cia Ci3
Cpp = |Ci2 Cxn Cx|, C.=|cs ca cu 5 sz = | Cxs C4 C23]|,
Ci6 €26 Ce6 €35 C34 (33 Cs6  Ca6  C36
1 0 0 0 0 O 0 0 1 0 0 O
Ki=1]0 0 0], K;,=10 1 0], Ki=1]0 0 0], Ks=10 0 1
0 0 0 1 00 0 0 0 0 0 0
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For the generalized plane problem the state equation and the output equation become

L, Lp][a] [P C.'p. 0
o) la]= ) - ] le )

% =|C,D C.C.'| {“} — BT,

T
where
u F1 0 —X7 0 0
u= v, fp: F2 5 P=¢|0| +9¢ X1 +b1 0 +b2 0
w 0 1 0 X1 X2

The homogeneous solution to Eq. (B.3) takes the form
a = UF(z), 7, = SF'(z), z=x| + px.
Substituting Eq. (B.5) in Eq. (B.3) yields

Ai+pA; c HU]O
B, +pB,+p°B; Al +pA) || S ’

where

A= —C; (C.K; + C;Kl), A = —C;Z] (C.Ks + C;Kz),

B, = K/C,K,, B,=-K/C,K,-K/C,K,, B;=-KIC,K,.
Expressing S in terms of U using (B.6), gives

S = [C.K;5 + C;Kl + p(C.K4 + C;ZKZ)]U'
Substituting it in (B.6), leads to

[Gi + p(G2 + G]) + p’G3]U = 0,
where

G, = K{C K, +K|C,K; + K{C.K; + K[C, K|,

G, = K|C,K; + K{C,.K, + K{C K, + K{C_.K,,

G; = K;C, K, + K] C,.K, + K; C..K, + K] C, K,.

(B.5)

(B.6)

A little manipulation shows that G; = Q, G, = R, G; = T. Non-trivial solution to Eq. (B.8) exists if the
determinant of the coefficient matrix vanishes. This results in exactly the sextic equation of Stroh for p, but

does not bring forth the eigen relation.
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